Model-Based Calibration Toolbox™

Reference

<

MATLAB&SIMULINK

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model-Based Calibration Toolbox™ Reference
© COPYRIGHT 2005-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

November 2005
September 2006
March 2007
September 2007
March 2008
October 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
March 2023
September 2022
March 2023

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 3.0 (Release 14SP3+)
Version 3.1 (Release 2006b)

Version 3.2 (Release 2007a)

Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 3.4.1 (Release 2008a+)
Revised for Version 3.5 (Release 2008b)
Revised for Version 3.6 (Release 2009a)
Revised for Version 3.7 (Release 2009b)
Revised for Version 4.0 (Release 2010a)
Revised for Version 4.1 (Release 2010b)
Revised for Version 4.2 (Release 2011a)
Revised for Version 4.3 (Release 2011b)
Revised for Version 4.4 (Release 2012a)
Revised for Version 4.5 (Release 2012b)
Revised for Version 4.6 (Release 2013a)
Revised for Version 4.6.1 (Release 2013b)
Revised for Version 4.7 (Release 2014a)
Revised for Version 4.8 (Release 2014b)
Revised for Version 4.8.1 (Release 2015a)
Revised for Version 5.0 (Release 2015b)
Revised for Version 5.1 (Release 2016a)
Revised for Version 5.2 (Release 2016b)
Revised for Version 5.2.1 (Release 2017a)
Revised for Version 5.3 (Release 2017b)
Revised for Version 5.4 (Release 2018a)
Revised for Version 5.5 (Release 2018b)
Revised for Version 5.6 (Release 2019a)
Revised for Version 5.7 (Release 2019b)
Revised for Version 5.8 (Release 2020a)
Revised for Version 5.9 (Release 2020b)
Revised for Version 5.10 (Release 2021a)
Revised for Version 5.11 (Release 2021b)
Revised for Version 5.12 (Release 2022a)
Revised for Version 5.14 (Release 2023a)
Revised for Version 5.13 (Release 2022b)
Revised for Version 5.14 (Release 2023a)

vi

Contents

Commands

1]

MBCModel.Project

2|

MBCModel.Model

3|

MBCModel.Data

4

MBCdoe.Design

S|

MBCModel.LinearModel

6|

MBCModel.ModelProperties

7

MBCModel.Testplan

8|

MBCModel.RBFModelParameters

9

mbcboundary

10|

Commands

1 Commands

MBC Model Fitting

Create experimental designs and statistical models for model-based calibration

Description

The MBC Model Fitting app enables you to create experimental designs, fit statistical models to
engine data, and export the models to generate optimal calibrations in MBC Optimization app. You
can also export models to MATLAB® and Simulink® to reuse statistical models for control design,
hardware-in-the-loop testing, or powertrain simulation.

Open the MBC Model Fitting App

* MATLAB Toolstrip: On the Apps tab, under Automeotive, click the app icon.
* MATLAB command prompt: Enter mbcmodel.

Examples

. “Model Set Up”

. “Multi-Injection Diesel Calibration”
. “Gasoline Engine Calibration”

. “Model Export to MATLAB, Simulink, and CAGE”

Programmatic Use
mbcmodel opens the Model Browser or brings an existing Model Browser to the front of the screen.

mbcmodel fileName.mat opens the Model Browser and loads the file specified by fileName.mat.

Version History
Introduced before R2006a

See Also

Apps
MBC Optimization

Topics

“Model Set Up”

“Multi-Injection Diesel Calibration”

“Gasoline Engine Calibration”

“Model Export to MATLAB, Simulink, and CAGE”

1-2

MBC Optimization

MBC Optimization

Generate optimal lookup tables for model-based calibration

Description

The MBC Optimization app lets you use statistical models created in MBC Model Fitting app to
generate optimal calibrations for lookup tables that control engine functions. You can generate
calibrations and lookup tables for complex, high-degree-of-freedom engines to identify the optimal
balance of engine performance, emissions, and fuel economy.

Open the MBC Optimization App

* MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
* MATLAB command prompt: Enter cage.

Examples

. “Calibration Setup”

. “Optimization”

. “Feature Calibration”

. “Tradeoff Calibration”

Programmatic Use

cage opens the CAGE Browser or brings an existing CAGE Browser to the front of the screen. CAGE
stands for Calibration Generation.

cage fileName.cag opens the CAGE Browser and loads the file specified by fileName.

Version History
Introduced before R2006a

See Also

Apps
MBC Model Fitting

Topics

“Calibration Setup”
“Optimization”
“Feature Calibration”
“Tradeoff Calibration”

1-3

1 Commands

Activelnputs

Active boundary model inputs

Syntax

B.Activelnputs = [X]

Description

ActiveInputs is a property of mbcboundary.Model.

B.ActiveInputs = [X] sets the active inputs for the boundary model. X is a logical row vector
indicating which inputs to use to fit a boundary. You can build boundary models using subsets of input

factors and then combine them for the most accurate boundary. This approach can provide more
effective results than including all inputs.

Examples

To make a boundary model using only the first two inputs:

B.ActivelInputs = [true true false falsel];

Version History
Introduced in R2009b

1-4

AlternativeModelStatistics

AlternativeModelStatistics

Summary statistics for alternative models

Syntax
S

AlternativeModelStatistics(R)

[92]
1l

AlternativeModelStatistics(R, Name)

Description

This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel. localresponse and mbcmodel. response.

This returns an array (S) of summary statistics of all the alternative model fits, to be used to select
the best model. These are the summary statistics seen in the list view at the bottom of the Model
Browser GUI in any model view.

You must use CreateAlternativeModels before you can compare the alternative responses using
AlternativeModelStatistics. Then use ChooseAsBest.

R is the model object whose alternative response models you want to compare. R could be a local (L),
response feature (R) or hierarchical response (HR) model.

S is a structure containing Statistics and Names fields.

* S.Statistics is a matrix of size (number alternative responses x number of statistics).
* S.Names is a cell array containing the names of all the statistics.

The available statistics vary according to what kind of parent model (two-stage, local, response
feature or response) produced the alternative models, and include PRESS RMSE, RMSE, and Two-
Stage RMSE.

All the available statistics are calculated unless you specify which you want. You can specify only the
statistics you require using the following form:

S = AlternativeModelStatistics(R, Name)
This returns a double matrix containing only the statistics specified in Name.

Note that you use SummaryStatistics to examine the fit of the current model, and
AlternativeModelStatistics to examine the fit of several alternative child models.

Examples

S = AlternativeModelStatistics(R);

Version History
Introduced before R2006a

1-5

1 Commands

See Also
CreateAlternativeModels | SummaryStatistics | ChooseAsBest

1-6

AlternativeResponses

AlternativeResponses

Array of alternative responses for this response

Syntax

altR = R.AlternativeResponses

Description
This is a property of the response model object, mbcmodel. response (R).

It returns a list of alternative responses used for one-stage or response feature models.

Examples

R = testplan.Responses;

TQ = R(1);
AR = TQ.AlternativeResponses;
See Also

LocalResponses | ResponseFeatures(Local Response)

1-7

1 Commands

1-8

ChooseAsBest

Choose best model from alternative responses

Syntax

ChooseAsBest (R, Index)

Description

This is a method of the response model object, mbcmodel. response. This is the same function as
selecting the best model in the Model Selection window of the Model Browser GUI. For a local model
MakeHierarchicalResponse performs a similar function.

R is the object containing the response model.

Index is the number of the response model you want to choose as best. Use
AlternativeResponses to find the index for each response model, and use
AlternativeModelStatistics to choose the best fit.

Examples

ChooseAsBest (R, AlternativeModel)

RMSE = AlternativeModelStatistics(R, 'RMSE');
[mr, Best] = min(RMSE);

ChooseAsBest (R, Best);

Version History
Introduced before R2006a

See Also
AlternativeResponses | AlternativeModelStatistics | DiagnosticStatistics |
MakeHierarchicalResponse

CreateAlgorithm

CreateAlgorithm

Create algorithm

Syntax

newalg = alg.CreateAlgorithm(AlgorithmName)

Description
This is a method of mbcmodel . fitalgorithm.

newalg = alg.CreateAlgorithm(AlgorithmName) creates an algorithm of the specified type.
algis ambcmodel.fitalgorithm object. AlgorithmName must be in the list of alternative
algorithms given by alg.getAlternativeNames.

To change the fit algorithm for a model:
>> model = mbcmodel.CreateModel('Polynomial', 2);
>> minpress = model.FitAlgorithm.CreateAlgorithm('Minimize PRESS');

>> model.FitAlgorithm = minpress;

The AlgorithmName determines what properties you can set. You can display the properties for an
algorithm as follows:

>> model.FitAlgorithm.properties
Algorithm: Minimize PRESS
Alternatives: 'Least Squares', 'Forward Selection', 'Backward
Selection', 'Prune’
MaxIter: Maximum Iterations (int: [1,1000])

As a simpler alternative to using CreateAlgorithm, you can assign the algorithm name directly to the
algorithm. For example:

B.FitAlgorithm.BoundaryPointOptions = 'Boundary Only';
Or:
m.FitAlgorithm = 'Minimize PRESS';

The following sections list the properties available for each algorithm type.

Linear Model Algorithm Properties

Linear Models Algorithms

Used by polynomials, hybrid splines and as the StepAlgorithm for RBF algorithms.
Algorithm: Least Squares

Alternatives: 'Minimize PRESS', 'Forward Selection', 'Backward Selection', 'Prune’

1-9

1 Commands

Algorithm: Minimize PRESS

Alternatives: 'Least Squares', 'Forward Selection', 'Backward Selection', 'Prune’
e MaxIter: Maximum Iterations (int: [1,1000])

Algorithm: Forward Selection

Alternatives: 'Least Squares', 'Minimize PRESS', 'Backward Selection', 'Prune’

* ConfidenceLevel: Confidence level (%) (numeric: [70,100])
¢ MaxIter: Maximum Iterations (int: [1,1000])
* RemoveAll: Remove all terms first (Boolean)

Algorithm: Backward Selection
Alternatives: 'Least Squares', 'Minimize PRESS', 'Forward Selection', 'Prune’

* ConfidenceLevel: Alpha (%) (numeric: [70,100])
e MaxIter: Maximum Iterations (int: [1,1000])

* IncludeAll: Include all terms first (Boolean)
Algorithm: Prune

Alternatives: 'Least Squares', 'Minimize PRESS', 'Forward Selection', 'Backward
Selection'

» Criteria (PRESS RMSE|RMSE|GCV|Weighted PRESS|-2logL|AIC|AICc|BIC|R"~2|R"2 adj|PRESS
R”~2|DW|Cp|cond(]))

e MinTerms: Minimum number of terms (int: [0,Inf])

* Tolerance (numeric: [0,1000])

* IncludeAll: Include all terms before prune (Boolean)
* Display (Boolean)

RBF Algorithm Properties

For information about any of the RBF and Hybrid RBF algorithm properties, see “Radial Basis
Functions for Model Building”, and especially “Fitting Routines” in the Model Browser User's Guide.

Algorithm: RBF Fit

* WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)
* StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms
Alternatives: 'WidPerDim', 'Tree Regression'
Algorithm: TrialWidths

* NestedFitAlgorithm: Lambda selection algorithm (mbcmodel.fitalgorithm)
* Trials: Number of trial widths in each zoom (int: [2,100])

1-10

CreateAlgorithm

Zooms: Number of zooms (int: [1,100])

MinWidth: Initial lower bound on width (numeric: [2.22045e-016,1000])
MaxWidth: Initial upper bound on width (numeric: [2.22045e-016,100])
PlotFlag: Display plots (Boolean)

PlotProgress: Display fit progress (Boolean)

Algorithm: WidPerDim

Alternatives: 'TrialWidths', 'Tree Regression'

NestedFitAlgorithm: Lambda selection algorithm (mbcmodel.fitalgorithm)
DisplayFlag: Display (Boolean)

MaxFunEvals: Maximum number of test widths (int: [1,1e+006])
PlotProgress: Display fit progress (Boolean)

Algorithm: Tree Regression

Alternatives: 'TrialWidths', 'WidPerDim'

MaxNumRectangles: Maximum number of panels (int: [1,Inf])
MinPerRectangle: Minimum data points per panel (int: [2,Inf])
RectangleSize: Shrink panel to data (Boolean)

AlphaSelectAlg: Alpha selection algorithm (mbcmodel.fitalgorithm)

Lambda Selection Algorithms

Algorithm: IterateRidge

Alternatives: 'IterateRols', 'StepItRols'

CenterSelectionAlg: Center selection algorithm (mbcmodel.fitalgorithm)
MaxNumlter: Maximum number of updates (int: [1,100])

Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
NumberOfLambdaValues: Number of initial test values for lambda (int: [0,100])
CheapMode: Do not reselect centers for new width (Boolean)

PlotFlag: Display (Boolean)

Algorithm: IterateRols

Alternatives: 'IterateRidge', 'StepItRols'

CenterSelectionAlg: Center selection algorithm (mbcmodel.fitalgorithm)
MaxNumlter: Maximum number of iterations (int: [1,100])

Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
NumberOfLambdaValues: Number of initial test values for lambda (int: [0,100])
CheapMode: Do not reselect centers for new width (Boolean)

PlotFlag: Display (Boolean)

Algorithm: StepItRols

1-11

1 Commands

1-12

Alternatives: 'IterateRidge', 'IterateRols'

* MaxCenters: Maximum number of centers (evalstr)

* PercentCandidates: Percentage of data to be candidate centers (evalstr)

+ StartLambdaUpdate: Number of centers to add before updating (int: [1,Inf])

* Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])

¢ MaxRep: Maximum number of times log10(GCV) change is minimal (int: [1,100])

Center Selection Algorithms
Algorithm: Rols
Alternatives: 'RedErr', 'WiggleCenters', 'CenterExchange'’

* MaxCenters: Maximum number of centers (evalstr)
* PercentCandidates: Percentage of data to be candidate centers (evalstr)
» Tolerance: Regularized error tolerance (numeric: [2.22045e-016,1])

Algorithm: RedErr

Alternatives: 'Rols', 'WiggleCenters', 'CenterExchange’
* MaxCenters: Number of centers (evalstr)

Algorithm: WiggleCenters

Alternatives: 'Rols"', 'RedErr', 'CenterExchange'

* MaxCenters: Number of centers (evalstr)
* PercentCandidates: Percentage of data to be candidate centers (evalstr)

Algorithm: CenterExchange
Alternatives: 'Rols', 'RedErr', 'WiggleCenters'

* MaxCenters: Number of centers (evalstr)
* NumLoops: Number of augment/reduce cycles (int: [1,Inf])
* NumAugment: Number of centers to augment by (int: [1,Inf])

Tree Regression Algorithms
Algorithm: Trial Alpha
Alternatives: 'Specify Alpha'

* AlphaLowerBound: Initial lower bound on alpha (numeric: [2.22045e-016,Inf])
» AlphaUpperBound: Initial upper bound on alpha (numeric: [2.22045e-016,Inf])
o Zooms: Number of zooms (int: [1,Inf])

* Trials: Trial alphas per zoom (int: [2,Inf])

* Spacing: Spacing (LinearLogarithmic)

* CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

CreateAlgorithm

Algorithm: Specify Alpha
Alternatives: 'Trial Alpha'

* Alpha: Width scale parameter, alpha (numeric: [2.22045e-016,Inf])
* NestedFitAlgorithm: Center selection algorithm (mbcmodel.fitalgorithm)

Algorithm: Tree-based Center Selection
Alternatives: 'Generic Center Selection'

* ModelSelectionCriteria: Model selection criteria (BIC|GCV)
¢ MaxNumberCenters: Maximum number of centers (evalstr)

Algorithm: Generic Center Selection

Alternatives: 'Tree-based Center Selection'

* CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)
Hybrid RBF Algorithms

Algorithm: RBF Fit

* WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)
* StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms
Algorithm: TrialWidths

* NestedFitAlgorithm: Lambda and term selection algorithm (mbcmodel.fitalgorithm)
o Trials: Number of trial widths in each zoom (int: [2,100])

e Zooms: Number of zooms (int: [1,100])

¢ MinWidth: Initial lower bound on width (numeric: [2.22045e-016,1000])

* MaxWidth: Initial upper bound on width (numeric: [2.22045e-016,100])

* PlotFlag: Display plots (Boolean)

» PlotProgress: Display fit progress (Boolean)

Nested Fit Algorithms
Algorithm: Twostep
Alternatives: 'Interlace’

* MaxCenters: Maximum number of centers (evalstr)

* PercentCandidates: Percentage of data to be candidate centers (evalstr)

+ StartLambdaUpdate: Number of terms to add before updating (int: [1,Inf])

* Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])

* MaxRep: Maximum number of times log10(GCV) change is minimal (int: [1,100])
* PlotFlag: Display (Boolean)

1-13

1 Commands

1-14

Algorithm: Interlace
Alternatives: 'Twostep'

¢ MaxParameters: Maximum number of terms (evalstr)

* MaxCenters: Maximum number of centers (evalstr)

* PercentCandidates: Percentage of data to be candidate centers (evalstr)

* StartLambdaUpdate: Number of terms to add before updating (int: [1,Inf])

* Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])

* MaxRep: Maximum number of times log10(GCV) change is minimal (int: [1,100])

Boundary Model Fit Algorithm Parameters

The following sections list the available fit algorithm parameters for command-line boundary models.
The boundary model fit algorithm parameters have the same fit options as the Boundary Editor GUI.
For instructions on using these fit options, see “Editing Boundary Model Fit Options” in the Model
Browser documentation.

Convex Hull

KeepAllFacets: Boolean to indicate whether to keep all facets (default is false, do not keep all
facets).

Tolerance: Tolerance for maximum 1-norm distance allowed for removing facets (numeric: [0,Inf],
default 0.02). To remove more facets, increase the tolerance.

For more information, see “Convex Hull Setting” in the Model Browser documentation.

Ellipsoid
Algorithm: Constraint Fitting
BoundaryPointOptions: Boundary Points (mbcmodel.fitalgorithm)

The boundary points algorithm uses optimization to find the best ellipse. These options are from
fmincon.

Algorithm: Boundary Points

+ Display: Display (none|iter|final)

¢ MaxFunEvals: Maximum function evaluations (int: [1,Inf])
¢ Maxlter: Maximum iterations (int: [1,Inf])

* TolFun: Function tolerance (numeric: [1e-012,Inf])

* TolX: Variable tolerance (numeric: [1e-012,Inf])

* TolCon: Constraint tolerance (numeric: [1e-012,Inf])

Star-shaped
Algorithm: Constraint Fitting
SpecialPointOptions: Special Points (mbcmodel.fitalgorithm)

BoundaryPointOptions: Boundary Points (mbcmodel.fitalgorithm)

CreateAlgorithm

ConstraintFitOptions: Constraint Fit (mbcmodel.fitalgorithm)
Star-shaped—Special Points

Algorithm: Star-shaped Points
CenterAlg: Center (mbcmodel.fitalgorithm)
Algorithm alternatives: 'Mean', 'Median', 'Mid Range', 'Min Ellipse', 'User Defined'

For User Defined only: CenterPoint: User-defined center [X1,X2] (vector: NumberOfActivelnputs)

Star-shaped—Boundary Points

You can choose to find boundary points (use Interior) or to assume that all points are on the
boundary (use Boundary 0nly). The interior algorithm then has manual and auto options for the
dilation radius and ray casting algorithms.

* Algorithm: Boundary Only (no further options)
* Algorithm: Interior. Further options:

* DilationRadius (mbcmodel.fitalgorithm)

* Algorithm: Auto
* Algorithm: Manual

* radius: Radius (numeric: [0,Inf])
* RayCasting (mbcmodel.fitalgorithm)

* Algorithm: From data
* Algorithm: Manual

* nrays: Number of Rays (int: [1,Inf])
Star-shaped—Constraint Fit
Algorithm: Star-shaped RBF Fit
Further options:

* Transform (None|Log|McCallum)
* KernelOpts: RBF Kernel (mbcmodel.fitalgorithm)

Kernel algorithms can be: wendland, multiquadric, recmultiquadric, gaussian, thinplate,
logisticrbf. linearrbf, cubicrbf.

You can specify widths and continuity as sub-properties of particular RBF kernels.

* You can set widths for wendland, multiquadric, recmultiquadric, gaussian, logisticrbf. Width:
RBF Width (numeric: [1.49012e-008,Inf])

You can set Continuity for wendland. Cont: RBF Continuity (0|2|4|6)
RbfOpts: RBF Algorithm (mbcmodel.fitalgorithm)

Algorithm: Interpolation. The following are additional settings for interpolating RBF.

1-15

1 Commands

1-16

* CoincidentStrategy: Coincident Node Strategy (Maximum|Minimum|Mean)
* Algorithm: Algorithm (Direct| GMRES|BICG|CGS|QMR)

* Tolerance: Tolerance (numeric: [0,Inf])

¢ MaxIt: Maximum number of iterations (int: [1,Inf])

Examples

First get a fitalgorithm object, F, from a model:

mbcmodel.CreateModel('Polynomial', 4);

M
F = M.FitAlgorithm

F =
Algorithm: Least Squares

Alternatives: 'Minimize PRESS', 'Forward Selection', 'Backward
Selection', 'Prune’

1x1 struct array with no fields.

Then, to create a new algorithm type:

Alg

CreateAlgorithm(F, 'Minimize PRESS')

Alg =

Algorithm: Minimize PRESS

Alternatives: 'Least Squares', 'Forward Selection', 'Backward

Selection', 'Prune’
MaxIter: 50

The AlgorithmName determines what properties you can set. You can display the properties for an
algorithm as follows:

>> model.FitAlgorithm.properties
Algorithm: Minimize PRESS
Alternatives: 'Least Squares', 'Forward Selection', 'Backward

Selection', 'Prune’
MaxIter: Maximum Iterations (int: [1,1000])

As a simpler alternative to using CreateAlgorithm, you can assign the algorithm name directly to
the algorithm. For example:

B.FitAlgorithm.BoundaryPointOptions = 'Boundary Only';
Or:
m.FitAlgorithm = 'Minimize PRESS';

Case and spaces are ignored.

Version History
Introduced in R2007a

CreateAlgorithm

See Also
getAlternativeNames | SetupDialog

1-17

1 Commands

1-18

CreateAlternativeModels

Create alternative models from model template

Syntax

R

CreateAlternativeModels (R, modeltemplate, criteria)

R = CreateAlternativeModels(R, modellist, criteria)
R = CreateAlternativeModels(R, LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)
Description

This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel. localresponse and mbcmodel. response.

This is the same as the Build Models function in the Model Browser GUI. A selection of child node
models are built. The results depend on where you call this method from. Note that the hierarchical
model is automatically constructed when CreateAlternativeModels is called for a local model.

» This option makes alternative response feature models for each response feature.
R = CreateAlternativeModels (R, models, criteria)
* Models is the list of models. You can use a model template file (. mbm) created in the Model

Browser, or a cell array of mbcmodel . model objects.

* Criteriais the selection criteria for best model (from the statistics available from
AlternativeModelStatistics).

* This option makes alternative local models as well as alternative response feature models.
R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

* LocalModels is the list of local models - you must pass in an empty matrix).
* LocalCriteriais 'Two-Stage RMSE'.

* GlobalModels is the list of global models (from the model template).

* GlobalCriteria is the selection criteria for best model.

You construct a model template file (such as 'mymodels.mbm') in the Model Browser. From any
response (global or one-stage model) with alternative responses (child nodes), select Model > Make
Template. You can save the child node model types of your currently selected modeling node as a
model template. Alternatively from any response click Build Models in the toolbar and create a
series of alternative response models in the dialog.

Examples

mymodels = 'mymodels.mbm';
mlist = {};

CreateAlternativeModels

load('-mat', mymodels);

criteria = 'PRESS RMSE';

CreateAlternativeModels(R, [], 'Two-Stage RMSE', mlist,

criteria);

Note that the model template contains the variable mlist.
CreateAlternativeModels(RESPONSE, 'alternative models.mbm', 'Weighted PRESS')
creates alternative response feature models based upon the model template file

alternative models.mbt, and chooses the best model based upon each model's Weighted PRESS
statistic.

Version History
Introduced before R2006a

See Also
AlternativeModelStatistics

1-19

1 Commands

1-20

CreateResponseFeature

Create new response feature for local model

Syntax

RF
RF

CreateResponseFeature(RF,RFType)
CreateResponseFeature(RF,RFType,EvaluationPoint)

Description
This is a method of mbcmodel.localresponse.

RF = CreateResponseFeature(RF,RFType) creates a response feature for RFType.

RF = CreateResponseFeature(RF,RFType,EvaluationPoint) creates a response feature for
RFType at EvaluationPoint.

RFType is a description character vector belonging to the set of alternative response features for the
current local model.

EvaluationPoint is a row vector with an element for each model input and is used for response
features that require an input value to evaluate the response feature (e.g., function evaluation,
derivatives). It is an error to specify an evaluation point for a response feature type that does not
require an evaluation point.

You should use this method to add response features without refitting all local and global models.
Examples

RF = CreateResponseFeature(RF, 'Beta 1')

Version History
Introduced in R2007b

See Also
ResponseFeatures(Local Model)

DiagnosticStatistics

DiagnosticStatistics

Diagnostic statistics for response

Syntax

S = DiagnosticStatistics(R)

S = DiagnosticStatistics(R, Stats)

S = DiagnosticStatistics(LocalR, TestNumbers)

S = DiagnosticStatistics(LocalR, TestNumbers, Stats)

Description

This is a method of the local and response model objects, mbcmodel.localresponse and
mbcmodel. response.

The options available are model-specific and are the same options shown in the drop-down menus of
the scatter plots (the top plots) in the local and global (response feature) model views of the toolbox
GUI.

S = DiagnosticStatistics(R) returns S, a structural array containing Statistics and Names
fields. R is the response or local response model object.

S = DiagnosticStatistics(R, Stats) allows you to specify Stats, an optional input that
defines which diagnostic statistics you want from the available list. If you don't specify Stats, you
get all available statistics.

S = DiagnosticStatistics(LocalR, TestNumbers) returns S for LocalR, alocal response
object, and Testnumbers specifies the index into tests for local or hierarchical models.

Use S = DiagnosticStatistics(LocalR, TestNumbers, Stats) to specify which diagnostic
statistics you want from the available list.

A row is set to NaN if that point is removed.

Examples

studentRes = DiagnosticStatistics(local, tn, 'Studentized
residuals');

Version History
Introduced before R2006a

See Also
SummaryStatistics | AlternativeModelStatistics

1-21

1 Commands

DoublelnputData

Data being used as input to model

Syntax

X = DoublelInputData(R, TestNumber)

Description

This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel. response. It returns an array (X) containing the input
data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples

X
X

DoublelInputData(R);
DoubleInputData(local, tn);

Version History
Introduced before R2006a

See Also
DoubleResponseData

1-22

DoubleResponseData

DoubleResponseData

Data being used as output to model for fitting

Syntax

Y = DoubleResponseData(R, TestNumber)

Description

This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel. response. It returns an array (Y) containing the
response data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples

Y
y

DoubleResponseData(R);
DoubleResponseData(local, tn);

Version History
Introduced before R2006a

See Also
DoubleInputData

1-23

1 Commands

1-24

Export

Make command-line or Simulink export model

Syntax

ExportedModel = Export(model)

ExportedModel = Export(model, format)

Description

ExportedModel = Export(model) exports the model to MATLAB.

ExportedModel = Export(model, format) exports the model in the specified format, which can
be 'MATLAB' or 'Simulink'.

Examples

Export Model

Export model to MATLAB.
M = Export(R2, 'MATLAB');
mbt model = Export(maxTQ, 'MATLAB');

Input Arguments

model — Model object
mbcmodel. linearmodel object

Model object, specified as a mbcmodel. linearmodel object. model contains the response models
from the node you are exporting from.

format — Exported model format
"MATLAB' | 'SIMULINK"

Format of exported model, specified as 'MATLAB' or 'Simulink".

Output Arguments

ExportedModel — Model exported
xregstatsmodel object

Model exported, specified as an xregstatsmodel object. You can use ExportedModel to evaluate
the model and calculate the prediction error variance. If you convert an mbcmodel.localresponse
object and you have not created a two-stage model (hierarchical response object), then the output is
an mbcPointByPointModel object that you can use to evaluate the model and calculate the
prediction error variance.

Export

You can evaluate models exported to the MATLAB workspace in the same way as when you export
them from the Model Browser. You can save these models as a *.mat file and load them into CAGE.

More About
Usage

This is a method of these model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse, mbcmodel. response and mbcmodel.model.

Version History
Introduced before R2006a

See Also
mbcmodel. linearmodel | mbcmodel.model

1-25

1 Commands

GetAllTerms

List all model terms

Syntax

Terms = M.Properties.GetAllTerms

Description
This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetAllTerms returns a list of all terms in this model. M is an
mbcmodel. linearmodel object.

Terms is a (numterms-by-nfactors) array. The (m,n)'* element is the power of the n'® factor in the m*™
term.

Examples

The following example creates a model, and finds which terms are quadratic in the first input factor
(X1):
model = mbcmodel.CreateModel('Polynomial', 2)
model =

1 + 2*¥X1 + 8*X2 + 3*X172 + 6*X1*X2 + 9*X272 + 4*X1"3

+ 5¥X17M2*X2 + 7*X1*X272 + 10*X2"3

InputData: [0x2 double]

OutputData: [0x1 double]

Status: Not fitted

Linked to Response: <not linked>

>>terms = model.Properties.GetAllTerms;
>>x1lquadraticterms = find(terms(:,1)==2)

xlquadraticterms =

4
8

Version History
Introduced in R2007a

See Also
GetIncludedTerms

1-26

getAlternativeNames

getAlternativeNames

List alternative algorithm names

Syntax

F.getAlternativeNames
AltList = getAlternativeNames(F)

Description
This is a method of mbcmodel . fitalgorithm.

F.getAlternativeNames or AltList = getAlternativeNames(F) return a cell array of
alternative algorithm names. F is a mbcmodel . fitalgorithm object.

Examples

model = mbcmodel.CreateModel('Polynomial', 2);
F = model.FitAlgorithm;
altAlgs = F.getAlternativeNames

altAlgs =
'Least Squares' 'Minimize PRESS' 'Forward Selection'
'Backward Selection' 'Prune’

Version History
Introduced in R2007a

See Also
CreateAlgorithm | IsAlternative

1-27

1 Commands

GetincludedTerms

List included model terms

Syntax

Terms = M.Properties.GetIncludedTerms

Description
This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetIncludedTerms returns a list of those terms that will be used to fit
the model. M is an mbcmodel. linearmodel object.

Terms is a (numincludedterms-by-nfactors) array. The (m,n)!* element is the power of the n'® factor in
the m* included term.

Examples

>>model = mbcmodel.CreateModel('Polynomial', 2);
>>includedterms = model.Properties.GetIncludedTerms;
>>x1lquadraticterms = find(includedterms(:,1)==2)
xlgquadraticterms =

4
8

Version History
Introduced in R2007a

See Also
GetAllTerms | SetTermStatus

1-28

GetTermLabel

GetTermLabel

List labels for model terms

Syntax

Labels
Labels
Labels

M.Properties.GetTermLabel
M.Properties.GetTermLabel(Terms)

Description

M.Properties.GetTermLabel(Terms, 'Format',6OutputFormat)

This is a method of mbcmodel.linearmodelproperties, which returns a user-friendly label for

one or more specified terms.

Labels

Labels

Labels
with the specified terms and format.

Mis an mbcmodel.linearmodel object.

M.Properties.GetTermLabel lists the labels.

M.Properties.GetTermLabel(Terms) lists the labels with the specified terms.

M.Properties.GetTermLabel(Terms, 'Format',OutputFormat) lists the labels

The specified terms form a row where each value gives the power of that parameter. QutputFormat

can be 'List' or 'Formula'.

Examples

model = mbcmodel.CreateModel('Polynomial', 2);
model.Properties.GetTermLabel([1 2; 1 0])

produces {'X1*X272'; 'X1'} and

model.Properties.GetTermLabel([1 2; 1 0], 'Format',

produces 'X1*X272 + X1'.

Version History
Introduced in R2007a

See Also
GetAllTerms | GetIncludedTerms

'"Formula'

)

1-29

1 Commands

1-30

GetTermStatus

List status of some or all model terms

Syntax

Status
Status

M.Properties.GetTermStatus
M.Properties.GetTermStatus(Terms)

Description
This is a method of mbcmodel.linearmodelproperties.

Status = M.Properties.GetTermStatus returns the status of all of the terms in this model.
Status is a cell array of status character vectors. M is an mbcmodel. linearmodel object.

Status = M.Properties.GetTermStatus(Terms) returns the status of the specified terms in
this model.

The stepwise status for each term can be 'Always', 'Never' or 'Step'. The status determines whether

you can use the StepwiseRegression function to throw away terms in order to try to improve the
predictive power of the model.

Examples
model = mbcmodel.CreateModel('Polynomial', 2);
Get status of X23 term:

status = model.Properties.GetTermStatus([0 3])

status

'Step'
Get status of all terms linear in X1:
status = model.Properties.GetTermStatus([1 0; 1 1; 1 2])
status =

'Step'

'Step'
'Step'

Version History
Introduced in R2007a

GetTermStatus

See Also
SetTermStatus | StepwiseStatus

1-31

1 Commands

1-32

Inputs property

Inputs for test plan, model, boundary model, design, or constraint

Syntax
testplan.Inputs
model.Inputs
design.Inputs

boundary.Inputs

Description

This is a property of mbcmodel. testplan, mbcmodel.model, mbcdoe.design,
mbcdoe.designconstraint, and boundary model object mbcboundary.AbstractBoundary and
all its subclasses.

For mbcmodel. testplan, this property returns a cell array of mbcmodel.modelinput objects (one
array for each stage). You cannot change the number of stages after creation of the test plan.

For mbcmodel.model and mbcboundary objects, this property returns an mbcmodel.modelinput
object. You cannot edit this object when it is attached to a response. You cannot change number of
inputs after creation.

In both cases, verification of valid variable names and symbols occurs before assigning inputs to
model at the command line. Names and Symbols must be unique.

Boundary model inputs use an array of mbcmodel.modelinput objects. You set the number of
boundary model inputs when you create the boundary model. You can change the name, symbol, and
range of the inputs.

For mbcdoe.design, D.Inputs = NewInputs updates the inputs. You cannot change the number
of design inputs. Many designs have Limits properties in addition to model input ranges. These
properties allow you to restrict the range of the design without changing the model or losing points
via a constraint.

See Also
CreateTestplan | modelinput | mbcdoe.design

InputSignalNames property

InputSignalNames property

Names of signals in data that are being modeled

Syntax

inputs = A.InputSignalNames

Description

This is a property of mbcmodel. testplan and the modeling objects
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and mbcmodel. response.

A can be a test plan (T) or model (L, R, HR) object.

Examples
inputs = T.'InputSignalNames;

InputFactors = thisRF.InputSignalNames';

See Also
mbcmodel.data

1-33

1 Commands

IsAlternative

Test alternative fit algorithm

Syntax

OK = IsAlternative(Fl, F2)

Description
This is a method of mbcmodel . fitalgorithm.

OK = IsAlternative(F1l, F2) tests whether F is an alternative mbcmodel.fitalgorithm for
F1.

Version History
Introduced in R2007a

See Also
CreateAlgorithm | getAlternativeNames

1-34

Leve

Level

Level in test plan of response

Syntax

level = R.Level

Description

This is a property for all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel. response.

R is the response for which you want the level.

The level is usually 0 for hierarchical models, usually 1 for local models, and usually 2 or 1 for
response models. See “Understanding Model Structure for Scripting” for an explanation of what
Level indicates about a response.

Examples

level = R.Level;

See Also
mbcmodel. testplan

1-35

1 Commands

LocalBoundaries

Array of local boundary models for each operating point

Syntax

LocalBoundaries (B)

Description
This is a property of mbcboundary.PointByPoint.

LocalBoundaries (B) returns a cell array of local boundary models for each operating point (read
only).

Version History
Introduced in R2009b

1-36

LocalModel Properties

LocalModel Properties

Edit local model properties

Syntax

Props = localmodel.Properties

Description

This is a property of the mbcmodel. localmodel object, which is a subclass of mbcmodel.model.

See “Understanding Model Structure for Scripting” for an explanation of the relationship between

the different response types.

Every local model object has an mbcmodel.modelproperties object (within the Properties property). In
this object, each local model type has specific properties, as described in the following tables.

Local Polynomial Properties

Property Description
Order Polynomial order (vector int: {[0,Inf],2})
InteractionOrder Maximum order of interaction terms (int: [0,Inf])
TransformInputRange Transform inputs (Boolean)
ParameterNames List of parameter names (read-only)
StepwiseStatus Stepwise status {'Always', 'Never', 'Step'}
(cell)
Transform Transform function (char) or empty (' ')
CovarianceModel Covariance Model
(enum: {'None', 'Power"',
'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None', 'MA(1)"', 'AR(1)",
‘AR(2)'})

1-37

1 Commands

Local Hybrid Spline Properties

Property Description

Order Spline and polynomial order (vector int:
{[0,3],2})

SplineVariable Spline variable

Splinelnteraction Order of interaction between spline and

polynomial (int: [0,3])

Knots: Position of knots (vector real)

ParameterNames: List of parameter names (read-
only)

StepwiseStatus Stepwise status {'Always', 'Never', 'Step'}
(cell)
Transform Transform function (char) or empty (' ')
CovarianceModel Covariance Model
(enum: {'None', 'Power',
'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None','MA(1)"','AR(1)",
'AR(2)'})

Local Polynomial Spline Properties

Property Description
HighOrder Polynomial order above knot (int: [2,Inf])
LowOrder Polynomial order below knot (int: [2,Inf])
Transform Transform function (char) or empty (' ')
CovarianceModel Covariance Model

(enum: {'None', 'Power"',

'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None', 'MA(1)','AR(1)"',

"AR(2)'})
DatumType Datum Type (enum:

{'None', '"Maximum', 'Minimum',
'Linked'})

1-38

LocalModel Properties

Local Polynomial With Datum Properties

Property Description
Order Polynomial order (int: [0, Inf])
Transform Transform function (char) or empty (' ')
CovarianceModel Covariance Model
(enum: {'None', 'Power',
'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:
{'None', 'MA(1)','AR(1)",
‘AR(2)'})
DatumType Datum Type (enum:

{'None', 'Maximum', 'Minimum',
'Linked'})

Local Free Knot Spline Properties

Property Description
Order Spline Order (int: [0,Inf])
NumKnots Number of knots (int: 'Positive"')
Transform Transform function (char) or empty (' ')
CovarianceModel Covariance Model
(enum: {'None', 'Power',
'"Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None', 'MA(1)"', "AR(1)",
'AR(2)'})

Local Truncated Power Series Properties

Property Description
Order Polynomial order (int: 'Positive')
NumKnots Number of knots (int: 'Positive')
Transform Transform function (char) or empty (' ')
CovarianceModel Covariance Model
(enum: {'None', 'Power’,
'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None','MA(1)"','AR(1)",
'AR(2)'})

1-39

1 Commands

1-40

Local Growth Properties

Property Description
Model Growth model (enum: {'expgrowth', ‘gomp',
'logistic', 'logistic4’,
'mmf', 'richards’,
'weibul'})
AlternativeModels List of growth models (read-only)
Transform Transform function (char) or empty (' ')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model
(enum: {'None', 'Power"',
'"Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None','MA(1)"',"'AR(1)"',
"AR(2)'})

Local User-Defined Properties

Property Description
Model Name of user-defined model (enum:
{'exponential'})
AlternativeModels List of registered user-defined models (read-only)
Transform Transform function (char) or empty (' ')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model
(enum: {'None', 'Power"',
'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None','MA(1)"','AR(1)",
'AR(2)'})

LocalModel Properties

Local Transient Properties

Property Description
Model Name of transient model (enum:
{'fuelPuddle'})
AlternativeModels List of registered transient models (read-only)
Transform Transform function (char) or empty (' ')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model
(enum: {'None', 'Power"',
'Exponential', 'Mixed'})
CorrelationModel Correlation Model (enum:

{'None', 'MA(1)"', 'AR(1)",
‘AR(2)'})

Local Multiple Models Properties

Property Description

ModelCandidates List of candidate models (cell)

SelectionStatistic Selection statistic for automatic model selection
(char). See below for input names and
descriptions. The list of valid statistics is the
summary statistics in common with all model
candidates (e.g., if an interpolating RBF is one of
the candidates, only RMSE will be available).

AutomaticInputRanges Use data range as model input ranges (Boolean)

Transform Transform function (char) or empty (' ')

Model Type List of SelectionStatistic Inputs

Polynomial,Hybrid Spline, RBE, Hybrid RBF

"PRESS RMSE', 'RMSE', 'GCV"', 'Weighted
PRESS', '-2logL"', 'AIC', 'AICc’,
'BIC','R"2','R"2 adj',

"PRESS R™2','DW', 'Cp', 'cond(J)"

Neural Network

'RMSE', 'R"2", 'R"2
adj','-2loglL', 'AIC', 'AICc', 'BIC'

Free Knot Spline

"PRESS RMSE', 'RMSE', 'GCV', 'Weighted
PRESS', '-2logL', 'AIC', 'AICc',
'BIC','R"2','R"2 adj',

"PRESS R™2','DW', 'Cp'

Interpolating RBF 'RMSE"

SelectionStatistic Input |Description

Argument

'PRESS RMSE' Predicted Standard Error 'sqrt (PRESS/N)'
‘RMSE' Root Mean Square Error 'sqrt(SSE/(N-p))"'

1-41

1 Commands

1-42

SelectionStatistic Input
Argument

Description

'GCV!

Generalized Cross-validation
Variance

'N*SSE/ (N-p)~2"

‘Weighted PRESS'

Weighted Predicted Standard
Error

'sqrt(PRESS/(N-p-1))"

'-2loglL' -2 * log likelihood "N*log (SSE/N)

"AIC' Akaike Information Criteria '-2logL + 2*(p+1)'

"AICc' Small Sample Akaike '-2logL + 2(p+1)*N/(N-

Information Criteria p)'

'BIC' Bayesian Information Criteria '-2logL + 2*log(N)*(p
+1)"

'R™2! R"2 'l - SSE/SST!

'R™2 adj' Adjusted R™2 'l - SSE/SST*(N-1)/(N-
p)'

'PRESS R™2' PRESS R"2 'l - PRESS/SST'

'DW' Durbin-Watson Statistic 'sum((e i-e {i+1})"2)/
sum(e i~2)

'Cp' Mallow's Statistic 'SSE/ (SSEmax/ (N-pmax)) -
N + 2*p'

‘cond(J) ' Condition of Regression Matrix |'cond(J)"

Local Average Fit Properties

Property Description

Model [1x1 mbcmodel.linearmodel]

Transform Transform function (char) or empty (' ')
Examples

To create a local model object, create a model specifying any model Type that begins with the word

“local”, e.g.,

L = mbcmodel.CreateModel('Local Polynomial',2);

To show properties, at the command line enter:

P = L.Properties

P =

Local Polynomial Properties
[3 3]

Order:
InteractionOrder: 3
TransformInputRange: 1

ParameterNames: {10x1 cell}
StepwiseStatus: {10x1 cell}
Transform: ''
CovarianceModel: 'None'
CorrelationModel: 'None'

LocalModel Properties

To set the Order property to a quadratic, enter:

>> P.Order = [2,2]

P =

Local Polynomial Properties

Order:
InteractionOrder:
TransformInputRange:
ParameterNames:
StepwiseStatus:
Transform:
CovarianceModel:
CorrelationModel:

[2 2]

2

1

{6x1 cell}
{6x1 cell}

"None'
"None'

To update the local model, the properties object must be reassigned to the model as follows:

>> L.Properties = P

L =

1 + 2*¥X1 + 5*%X2 + 3*X172 + 4*X1*X2 + 6*X2"2

InputData: [0x2 double]
OutputData: [0x1 double]

Status: Being Edited

Linked to Response: not linked

See Also

CreateModel | mbcmodel.model | mbcmodel.modelproperties | ResponseFeatures(Local

Model)

1-43

1 Commands

LocalResponses

Array of local responses for response

Syntax

local = response.LocalResponses

Description
This is a property of the mbcmodel.hierarchicalresponse object.
It returns the local model response objects that belong to the hierarchical response R.

See “Understanding Model Structure for Scripting” for an explanation of the relationship between
the different response types.

Examples

local = response.LocalResponses;

1-44

MakeHierarchicalResponse

MakeHierarchicalResponse

Build two-stage model from response feature models

Syntax

0K = MakeHierarchicalResponse(L,MLE)

Description

This method of mbcmodel.localresponse builds a two-stage model from the response feature
models and optionally runs MLE (Maximum Likelihood Estimation). If there are more response
features than the number of parameters in the local model, the subset of response features that leads
to the best hierarchical response is chosen. The best hierarchical response is chosen using PRESS
RMSE (root mean square prediction error — see “PRESS statistic”) if all the response feature models
are linear. Otherwise, the best hierarchical response is chosen using Two-stage RMSE.

This performs a similar function to ChooseAsBest for response models. You can call
MakeHierarchicalResponse directly or indirectly by calling CreateAlternativeModels for a
local model. If you call CreateAlternativeModels for a local model,
MakeHierarchicalResponse is called automatically.

If the local and response models are not ready to calculate a two-stage model, an error is generated.
This situation can occur if you have created alternative models and not chosen the best. A sufficient
number of response features models to calculate the two-stage model must be selected.

L is the local model object.

MLE can be true or false. If true, MLE will be calculated.
Examples

OK = MakeHierarchicalResponse(L, true)

Version History
Introduced before R2006a

See Also
ChooseAsBest

1-45

1 Commands

Matchinputs

Match design constraint inputs

Syntax

MatchInputs(C,DesignInputs)

C
C = MatchInputs(C,DesignInputs,mapping)

Description

MatchInputs is a method of mbcdoe.designconstraint. Use it to match inputs for constraints
from different sources.

C

MatchInputs(C,DesignInputs) matches DesignInputs and inputsin C.

C = MatchInputs(C,DesignInputs,mapping) matches inputs where mapping defines the
relationship between the inputs in C, and DesignInputs.

Examples

A design constraint does not have required inputs EXH RET and INT ADV. Use MatchInputs to
match the constraint inputs to the design inputs as follows:

¢ = BoundaryModel(p.Testplans, 'all')
C =
Star(N-3.5e+003,L-0.54)
originalInputs=c.Inputs
originallnputs =

SPEED (N) [rpm] [500,6000]

LOAD (L) [%] [0.06,0.95]

designInputs = Design.Inputs
designInputs =
SPEED (N) [rpm] [500,6000]
LOAD (L) [%] [0.06,0.95]
EXH RET (ECP) [DegCrank] [-5,50]
INT ADV (ICP) [DegCrank] [-5,50]

c2=MatchInputs(c,designInputs,[1 2]);
newInputs=c2.Inputs
newInputs =
SPEED (N) [rpm] [500,6000]
LOAD (L) [%] [0.06,0.95]
EXH RET (ECP) [DegCrank]

_ [-5,560]
INT ADV (ICP) [DegCrank] [-5,50]

Version History
Introduced in R2008a

1-46

Matchinputs

See Also
CreateConstraint

1-47

1 Commands

1-48

mbcboundary.AbstractBoundary

Base boundary model class

Description

Do not use this class directly because the mbcboundary.AbstractBoundary class is the base class
for all boundary model classes in the Model-Based Calibration Toolbox software.

The following subclasses inherit all the properties and methods of the
mbcboundary.AbstractBoundary class:

* mbcboundary.Model

* mbcboundary.Boolean

* mbcboundary.PointByPoint
* mbcboundary.TwoStage

Properties of mbcboundary.AbstractBoundary

Inputs Inputs for test plan, model, boundary model, design, or constraint
Name Name of object
NumlInputs Number of model, boundary model, or design object inputs

Methods of mbcboundary.AbstractBoundary

Evaluate Evaluate model, boundary model, or design constraint

Version History
Introduced in R2009b

mbcboundary.Boolean

mbcboundary.Boolean

Boolean boundary model class

Description

You can create Boolean boundary models, which are useful as design constraints, in two ways. You
can either use logical operators (&,|,~) on other boundary models, or you can include more than one
boundary model in the best boundary model for a boundary tree. If you combine boundary models
using logical operators you cannot add the resulting Boolean boundary model to a boundary tree.

When working in projects, you can combine boundary models by including them InBest. For
example, you can use subsets of input factors to build boundary models (see ActiveFactors). You
can then combine the subset boundary models for the most accurate boundary. This approach can
provide more effective results than including all inputs. If the BestModel property of the boundary
tree includes more than one boundary model, then the boundary model is an mbcboundary.Boolean
object.

The mbcboundary.Boolean class is a subclass of mbcboundary.AbstractBoundary. The
mbcboundary.AbstractBoundary class is the base class for all boundary model classes in the
Model-Based Calibration Toolbox software.

Properties of mbcboundary.Boolean

Inputs Inputs for test plan, model, boundary model, design, or constraint
Name Name of object
NumlInputs Number of model, boundary model, or design object inputs

Methods of mbcboundary.Boolean

Evaluate Evaluate model, boundary model, or design constraint

Version History
Introduced in R2009b

1-49

1 Commands

mbcboundary.Model

Boundary model class

Description

The mbcboundary.Model class represents the basic boundary model types in the Model-Based
Calibration Toolbox software.

You can fit boundary models in mbcmodel projects using the boundary tree class
mbcboundary.Tree, or you can fit boundary models directly to data.

You can combine boundary models using the logical operators &, | and ~.

The mbcboundary.Model class is a subclass of mbcboundary.AbstractBoundary. The
mbcboundary.AbstractBoundary class is the base class for all boundary model classes in the
Model-Based Calibration Toolbox software.

Properties of mbcboundary.Model

Activelnputs Active boundary model inputs

Inputs Inputs for test plan, model, boundary model, design, or constraint
Name Name of object
NumlInputs Number of model, boundary model, or design object inputs

Methods of mbcboundary.Model

Evaluate Evaluate model, boundary model, or design constraint

Version History
Introduced in R2009b

mbcboundary.PointByPoint

mbcboundary.PointByPoint

Point-by-point boundary model class

Description

You can only create and fit point-by-point boundary models in the local boundary tree in two ways.
You can use either a two-stage test plan or an existing boundary of type, either 'Point-by-point’
or 'Two-stage'. You cannot create or fit these types of boundary models outside a project. Fit them
by adding to the boundary model to the boundary tree.

A separate boundary model is fitted to each operating point. Point-by-point boundary models are only
valid at the observed operating points.

The mbcboundary.PointByPoint class is a subclass of mbcboundary.AbstractBoundary. The
mbcboundary.AbstractBoundary class is the base class for all boundary model classes in the
Model-Based Calibration Toolbox software.

Properties of mbcboundary.PointByPoint

Inputs Inputs for test plan, model, boundary model, design, or constraint
LocalBoundaries Array of local boundary models for each operating point

Name Name of object

NumlInputs Number of model, boundary model, or design object inputs
OperatingPoints Model operating point sites

Methods of mbcboundary.PointByPoint

Evaluate Evaluate model, boundary model, or design constraint

Version History
Introduced in R2009b

1-51

1 Commands

1-52

mbcPointByPointModel

Class for evaluating point-by-point models and calculating PEV

Description

If you convert an mbcmodel. localresponse object using Export and you have not created a two-
stage model (hierarchical response object), then the output is an mbcPointByPointModel object.
Point-by-point models are created from a collection of local models for different operating points.
mbcPointByPointModel objects share all the same methods as xregstatsmodel except dferror.
See xregstatsmodel.

Version History
Introduced in R2010a

Model Object

Model Object

Model object within response object

Syntax

M = response.Model

Description

This is a property of all mbcmodel.response objects.

Each response contains a model object (nbcmodel.model) that can be extracted and manipulated
independently of the project.

Extract a model object from any response object, and then:

Fit to new data (fit).

Change model type, properties, and fit algorithm settings (ModelSetup;
mbcmodel.modelproperties, CreateAlgorithm).

Create a copy of the model with the same inputs (CreateModel).
Include and exclude terms to improve the model (StepwiseRegression).

Examine coefficient values, predicted values, and regression matrices (ParameterStatistics;
PredictedValue; Jacobian).

If you change the model you need to use UpdateResponse to replace the new model back into
the response object in the project. When you use UpdateResponse the new model is fitted to the
response data.

Examples

M = response.Model;

1-53

1 Commands

ModelForTest

Model for specified test

Syntax

model = ModelForTest(L,TestNo);

Description
This is a method of mbcmodel.localresponse.

model = ModelForTest(L,TestNo); gets the model for test TestNo.

Examples

To get the model for test 22, enter:

model = ModelForTest(L,22);

Version History
Introduced in R2007b

modelinput

modelinput

Create modelinput object

Syntax

Inputs = mbcmodel.modelinput('Propertyl',valuel, 'Property2',value2,...);
Inputs = mbcmodel.modelinput (NUMINPUTS) ;

Inputs = mbcmodel.modelinput (INPUTCELLARRAY);

Description

This is the constructor for the mbcmodel.modelinput object.

Inputs = mbcmodel.modelinput('Propertyl’',valuel, 'Property2',value2,...);
creates the mbcmodel.modelinput object.

You can set the properties shown in the following table.

Property Description

Range [min,max]

NonlinearTransform {'','1./x","'sqrt(x) "',

'loglO(x) "', 'x."2",
‘log(x) '}

Name Character vector. Signal name from dataset.
Inputs for a test plan must be set before selecting
data.

Symbol Character vector. Short name for plot labels and
for use in CAGE.

Units Character vector. Units are overwritten from the
dataset units when a data is selected.

Specify “property, value” pairs as follows:

Inputs = mbcmodel.modelinput('Symbol',{'A','B'}, ...
'Range',{[0 100],[-20 20]});

Scalar expansion of properties is supported, e.g.,

Inputs = mbcmodel.modelinput('Symbol',{'A"','B'},...
'Range', [0 100]);

Inputs = mbcmodel.modelinput (NUMINPUTS) ; creates the mbcmodel.modelinput object with
the specified number inputs.

NUMINPUTS is the number of inputs. Symbols are automatically setto 'X1', 'X2',...,'Xn'.The
default range is [-1,1]. For example:

Inputs = mbcmodel.modelinput(2);

1-55

1 Commands

1-56

Inputs = mbcmodel.modelinput (INPUTCELLARRAY) ; creates the mbcmodel.modelinput
object with INPUTCELLARRAY inputs.

INPUTCELLARRAY is a cell array with one row per input and 5 columns to specify factor names,
symbols, ranges and nonlinear transforms as follows.

The columns of INPUTCELLARRAY must be:

Factor symbol (character vector)

Minimum (double)

Maximum (double)

Transform (character vector) — empty for none

g A W N R

Signal name
These columns are the same as the columns in the Model Factor Setup dialog box, which can be
launched from the test plan in the model browser.

Examples

To create a modelinput object with 2 inputs, enter:
Inputs = mbcmodel.modelinput(2);
To create a modelinput object and define symbols and ranges, enter:

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
'Range’',{[0 100],[-20 201});

Inputs = mbcmodel.modelinput('Symbol',{'A"','B'},...
'Range', [0 100]);

To create a modelinput object and define inputs with a cell array, enter:

Inputs = mbcmodel.modelinput({...

'N', 800, 5000, '', 'ENGSPEED'
L', 0.1, 1, "', 'LOAD'
"EXH', -5, 50, '', 'EXHCAM'
"INT', -5, 50, '', '"INTCAM'});

Version History
Introduced in R2007b

See Also
CreateModel | CreateTestplan

MultipleVIF

MultipleVIF

Multiple VIF matrix for linear model parameters

Syntax

vif = MultipleVIF(linearmodel)

Description

vif = MultipleVIF(linearmodel) calculates the multiple Variance Inflation Factor (VIF) matrix

for the linear model parameters.

Examples

Calculate VIF of Linear Model

Calculate multiple VIF of knot model.

VIF = MultipleVIF(knot model)

Input Arguments

linearmodel — Model object
mbcmodel. linearmodel object

Model object, specified as a mbcmodel. linearmodel object.

Output Arguments

vif — Multiple variance inflation factor
matrix

Multiple variance inflation factor, returned as a matrix.

Version History
Introduced in R2007a

See Also
ParameterStatistics

1-57

1 Commands

1-58

Name

Name of object

Syntax

name = A.Name

Description

This is a property of project, data, test plan, input, model, fitalgorithm, design, design constraint, and
boundary model objects.

A can be any test plan (T), data (D), project (P) model (L, R, HR), fitalgorithm (F), design (D), design
constraint (C) or boundary model (B) object.

You can change the names of these objects as follows:

A.Name = newName
For response (output or Y data) signal names, see ResponseSignalName.

For mbcmodel.model.Name, the Name property refers to the model output name. The toolbox sets
this property to the data signal name when the response is created or if you assign a model to a
response. You cannot set this property when a response is attached to the model.

For model parameter names, see Names.

For testplan and response object input names, see InputSignalNames, and for data objects, see
mbcmodel. data.

Names of boundary models are read only and provide a description of the boundary model type and
active inputs.

Examples

ResponseFeatureName = thisRF.Name;

See Also
Names | InputSignalNames | mbcmodel.data | mbcdoe.design | ResponseSignalName

Names

Names

Model parameter names

Syntax

N = params.Names

Description

This is a property of mbcmodel.modelparameters. It returns the names of all the parameters in the
model. These are read-only.

Examples

N
N
N
"N’
"N"2!
'N*L'
"N*A’
L
LN
TL*A’
A’
"‘AN2';

paramsknot.Names

See Also
NumberOfParameters | Values | Name

1-59

1 Commands

1-60

Numlinputs

Number of model, boundary model, or design object inputs

Syntax

N = model.NumInputs

Description
This is a property of

* mbcmodel.model and mbcmodel.modelproperties

* The design objects mbcdoe.design, mbcdoe.generator, mbcdoe.candidateset, and
mbcdoe.designconstraint

* The boundary model object mbcboundary.AbstractBoundary and all its subclasses:
mbcboundary.Model, mbcboundary.Boolean, mbcboundary.PointByPoint and
mbcboundary.TwoStage. You set the number of boundary model inputs when you create the
boundary model.

It returns the number of inputs to the model, boundary model, or design object.

Examples
N = knot.NumInputs;

mbcdoe.design

NumberOfParameters

NumberOfParameters

Number of included model parameters

Syntax

N = knotparams.NumberOfParameters

Description
This is a read-only property of mbcmodel.linearmodelparameters, for linear models only.

The number returned is the number of parameters currently in the model (you can remove some
parameters by using StepwiseRegression). To see which parameters are currently in the model, use
StepwiseSelection. Only parameters listed as 'in' are currently included.

To see the total possible number of parameters in a linear model, use SizeOfParameterSet.

Use Names and Values to get the parameter names and values.

Examples

N = knotparams.NumberOfParameters;

See Also
SizeOfParameterSet | StepwiseSelection | StepwiseRegression | Names | Values

1-61

1 Commands

NumberOfTests property

Total number of tests being used in model

Syntax

numtests = A.NumberOfTests

Description
This is a property of all model objects: mbcmodel.hierarchicalresponse,

mbcmodel.localresponse and mbcmodel. response, and data objects mbcmodel.data. 'A' can
be any model or data object.

Examples

numTests = TQ response.NumberOfTests;

See Also
DefineTestGroups | mbcmodel.data

1-62

OperatingPoints

OperatingPoints

Model operating point sites

Syntax

OperatingPoints(B)

Description
This is a property of mbcboundary.PointByPoint.

OperatingPoints(B) returns the operating point sites for models (read only).

Version History
Introduced in R2009b

1-63

1 Commands

Outlierindices

Indices of DoubleInputData marked as outliers

Syntax

indices = OutlierIndices(R)

Description

This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel. response.

Examples
ind = OQutlierIndices(R);
bad = QutlierIndices(thisRF);

Version History
Introduced before R2006a

See Also
DoubleInputData

1-64

OutlierIindicesForTest

OutlierindicesForTest

Indices marked as outliers for test

Syntax

indices = OutlierIndicesForTest (R, TestNumber)

Description

This is a method of the local model object, mbcmodel. localresponse.

This shows the current records discarded as outliers.

You can use ' to use all tests.

Examples
ind = OQutlierIndicesForTest(R, ':');
bad = OutlierIndicesForTest(local, tn);

Version History
Introduced before R2006a

See Also
OutlierIndices

1-65

1 Commands

Parameters

Model parameters

Syntax

P = model.Parameters

Description

This is a property of mbcmodel.model, that contains an object mbcmodel.modelparameters. This
object contains a number of read-only parameters that describe the model.

All models have these properties:

» SizeOfParameterSet
* Names
* Values

Linear models also have these properties:

* StepwiseStatus
* NumberOfParameters
* StepwiseSelection

Examples

P = model.Parameters;

See Also
SizeOfParameterSet | Names | Values | StepwiseStatus | NumberOfParameters |
StepwiseSelection

1-66

PartialVIF

PartialVIF

Partial VIF matrix for linear model parameters

Syntax

vif = PartialVIF(linearmodel)

Description

vif = PartialVIF(linearmodel) calculates the partial Variance Inflation Factor (VIF) matrix for

the linear model parameters.

Examples

Calculate Partial VIF

Calculate partial VIF of knot model.

VIF = PartialVIF(knot model)

Input Arguments

linearmodel — Model object
mbcmodel. linearmodel object

Model object, specified as a mbcmodel. linearmodel object.

Output Arguments

vif — Partial variance inflation factor
matrix

Partial variance inflation factor, returned as a matrix.

Version History
Introduced in R2007a

See Also
ParameterStatistics

1-67

1 Commands

ParameterStatistics

Calculate parameter statistics for linear model

Syntax

ParameterStatistics(linearmodel)
ParameterStatistics(linearmodel,statType)

values
values

Description

values = ParameterStatistics(linearmodel) calculates the parameter statistics for
linearmodel.

values = ParameterStatistics(linearmodel,statType) calculates the parameter statistics
using the specified statType

Examples

Calculate Statistics Model

Calculate parameter statistics of knot model.

values = ParameterStatistics(knot)
values =

Alias: [7x3 double]
Covariance: [7x7 double]
Correlation: [7x7 double]
VIFsingle: [5x5 double]
VIFmultiple: [7x1 double]
VIFpartial: [5x5 double]
Stepwise: [10x4 double]

values.Stepwise

ans =
1.0e+003 *
0.0190 0.0079 0.0210 NaN
0.0000 0.0000 0.0210 1.9801
0.0000 0.0000 0.0200 0.2984
-0.0000 0.0000 0.0200 0.2768
0.0000 0.0000 0.0200 0.2890
-0.0526 0.0367 0.0210 0.2679
0.0911 0.0279 0.0210 0.3837
-0.0041 0.0024 0.0210 0.2728
-0.0178 0.0095 0.0200 0.2460

1-68

ParameterStatistics

0.0001 0.0000 0.0210 0.3246

Input Arguments

linearmodel — Model object
mbcmodel. linearmodel object

Model object, specified as a mbcmodel. linearmodel object.

statType — Type of parameter statistic
character vector | cell array

Type of parameter statistics, specified as a character vector specifying a particular statistic or a cell
array of character vectors specifying a number of statistics to output. The valid data types are

+ 'Alias'

* 'Covariance'

* 'Correlation'

* 'VIFsingle'

* 'VIFmultiple'

* 'VIFpartial'

* 'Stepwise'

All of these types (except 'Stepwise') appear in the Design Evaluation tool. See documentation for
more details of these matrices.

The Stepwise field contains the values found in the Stepwise table. In this array (and in the
Stepwise GUI) you can see for each parameter in the model: the value of the coefficient, the standard
error of the coefficient, the t value and Next PRESS (the value of PRESS if the status of this term is
changed at the next iteration). See the documentation for the Stepwise table. You can also see these
Stepwise values when you use StepwiseRegression.

Output Arguments

values — Parameter statistics values
array

Parameter statistics values, returned as a structure.

If statType is a character vector, then values is an array of doubles. If statType is a cell array of
character vectors, then values is a cell array of array of doubles.

Version History
Introduced before R2006a

See Also
StepwiseRegression

1-69

1 Commands

PEVForTest

Local model predicted error variance for test

Syntax

pev = PEVforTest(L, TestNumber, X)

Description

This is a method of the local model object, mbcmodel. localresponse.
L is the local model object.

TestNumber is the test for which you want to evaluate the model PEV.

X is the array of inputs where you want to evaluate the PEV of the model.

Examples

pev = PEVforTest(L, TestNumber, X);

Version History
Introduced before R2006a

See Also
pev

PredictedValueForTest

PredictedValueForTest

Predicted local model response for test

Syntax

y = PredictedValueForTest(L, TestNumber, X)

Description
This is a method of the local model object, mbcmodel. localresponse.
L is a local model object.

TestNumber is the test for which you want to evaluate the model.

X is the array of inputs where you want to evaluate the output of the model.

Examples

y = PredictedValueForTest (L, TestNumber, X);

Version History
Introduced before R2006a

See Also
PredictedValue

1-71

1 Commands

1-72

Properties (for candidate sets)

View